Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6726, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509209

RESUMO

Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Plântula , Germinação , Selênio/farmacologia , Antioxidantes/farmacologia , Sementes , Clorofila/farmacologia , Prolina/farmacologia
2.
Water Sci Technol ; 88(5): 1143-1154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771219

RESUMO

This review provides a current opinion on the most recent works that have been published toward the application of electrochemical advance oxidation processes (EAOPs) for the degradation of pharmaceutical and personal care products (PPCPs) in water streams. Advances in the application of anodic oxidation (AO)- and electro-Fenton (EF)-based processes are reported, including operational conditions, electrode performance, and removal. Although AO- and EF-based processes can easily reach 100% removal of PPCPs, mineralization is desirable to avoid the generation of potential toxic byproducts. The following section exploring some techno-economic aspects of the application of EAOPs is based on electrode selection, operational costs as well as their use as cotreatments, and their synergistic effects. Finally, this short review ends with perspectives about the emerging topics that are faced by these technologies applied for the degradation of PPCPs in research and practice.


Assuntos
Cosméticos , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio , Oxirredução , Eletrodos , Preparações Farmacêuticas
3.
Heliyon ; 9(6): e17586, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408922

RESUMO

PFAS have demonstrated to affect some aerobic microorganisms applied for wastewater treatment. This study evaluated the nutrient removal of three types of hydrogels containing a consortium of microalgae-bacteria (HB), activated carbon (HC), or both (HBC) in presence of perfluorodecanoic acid (PFDA). The nutrients evaluated were ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), phosphate (PO4), and chemical oxygen demand (COD). Fluorine (F-) concentration and the integrity of HB exposed to PFDA were also determined at the end of experiments to understand the potential sorption and effects of PFDA on hydrogel. The results indicated that the presence of PFDA did affect the nitrification process, 13% and 36% to HB and HBC, respectively. Mass balance confirmed negative impact of PFDA on nitrogen consumption in HB (-31.37%). However, NH4-N was removed by all types of hydrogels in a range of 61-79%, while PO4 was mainly removed by hydrogels containing activated carbon (AC), 37.5% and 29.2% for HC and HBC, respectively. The removal of both NH4 and PO4, was mainly attributed to sorption processes in hydrogels, which was enhanced by the presence of AC. PFDA was also adsorbed in hydrogels, decreasing its concentration between 18% and 28% from wastewater, and up to 39% using HC. Regarding COD concentration, this increased overtime but was not related to hydrogel structure, since Transmission Electron Microscopy imaging revealed that their structure was preserved in presence of PFDA. COD increasement could be attributed to soluble algal products as well as to PVA leaching from hydrogels. In general, the presence of AC in hydrogels can contribute to mitigate the toxic effect of PFDA over microorganisms involved in biological nutrient removal, and hydrogels can be a technique to partially remove this contaminant from aqueous matrices.

4.
Water Sci Technol ; 87(3): 527-538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789701

RESUMO

The high content of nitrogen in wastewater brings some operational, technical, and economical issues in conventional technologies. The aim of this study was to evaluate the nitrogen removal by hybrid hydrogels containing consortium microalgae-nitrifying bacteria in the presence of activated carbon (AC) used as an adsorbent of inhibitory substances. Hybrid hydrogels were synthesized from polyvinyl alcohol (PVA), sodium alginate (SA), biomass (microalgae-nitrifying bacteria), and AC. The hybrid hydrogels were evaluated based on the change in ammonium (NH4), nitrate (NO3), and chemical demand of oxygen (COD) concentrations, nitrification rate, and other parameters during 72 h. Results indicated that NH4 removal was more effective for hydrogels without AC than with AC, without significant differences regarding consortium biomass concentration (5 or 16%), presenting final concentrations of 3.13 and 3.75 mg NH4/L for hydrogels with 5 and 16% of the biomass, respectively. Regarding NO3 production, hydrogels without AC reached concentrations of 25.9 and 39.77 mg NO3/L for 5 and 16% of the biomass, respectively, while treatments with AC ended with 2.17 and 1.37 mg NO3/L. This confirms that hydrogels can carry out the nitrification process and do not need AC to remove potential inhibitors. The best performance was observed for the hydrogel with 5% of biomass without AC with a nitrification rate of 0.43 mg N/g TSS·h.


Assuntos
Microalgas , Águas Residuárias , Desnitrificação , Nitrogênio/análise , Nitrificação , Bactérias , Biomassa
5.
Environ Int ; 170: 107550, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219908

RESUMO

Phthalic acid esters (PAEs) or phthalates and bisphenol A (BPA) are emerging organic contaminants (EOCs) that may harm biota and human health. Humans can be exposed to these contaminants by drinking water consumption from water sources such as groundwater. Before their presence in aquifer systems, phthalates and BPA can be found in many matrices due to anthropogenic activities, which result in long-term transport to groundwater reservoirs by different mechanisms and reaction processes. The worldwide occurrence of phthalates and BPA concentrations in groundwater have ranged from 0.1 × 10-3 to 3 203.33 µg L-1 and from 0.09 × 10-3 to 228.04 µg L-1, respectively. Therefore, the aim of this review is to describe the groundwater contamination pathways of phthalates and BPA from the main environmental sources to groundwater. Overall, this article provides an overview that integrates phthalate and BPA environmental cycling, from their origin to human reception via groundwater consumption. Additionally, in this review, the readers can use the information provided as a principal basis for existing policy ratification and for governments to develop legislation that may incorporate these endocrine disrupting compounds (EDCs) as priority contaminants. Indeed, this may trigger the enactment of regulatory guidelines and public policies that help to reduce the exposure of these EDCs in humans by drinking water consumption.


Assuntos
Ciclismo , Água Subterrânea , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , Política Pública , Ácidos Ftálicos/química , Fenóis/química , Água Subterrânea/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
6.
Chemosphere ; 308(Pt 1): 136285, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057353

RESUMO

This review compiles the studies (2007-2021) regarding the occurrence of emerging organic contaminants (EOCs) and endocrine disruptors (EDs) in wastewater, surface water and groundwater in Mexico. A total of 174 compounds were detected, including pharmaceuticals, hormones, plasticizers, personal care products, sweeteners, drugs, and pesticides considered as EDs. The levels of EOCs and EDs varied from ng/L to 140 mg/L, depending on the compound, location, and compartment. Raw wastewater was the most studied matrix, showing a greater abundance and number of detected compounds. Nevertheless, surface waters showed high concentrations of bisphenol-A, butylbenzil-phthalate, triclosan, pentachlorophenol, and the hormones estrone, 17 α-ethinylestradiol, and 17 ß-estradiol, which exceeded the thresholds set by international guidelines. Concentrations of 17 α-ethinylestradiol and triclosan exceeding the above-mentioned limits were reported in groundwater. Cropland irrigation with raw wastewater was the principal activity introducing EOCs and EDs into groundwater. The groundwater abundance of EOCs was considerably lesser than that of wastewater, highlighting the attenuation capacity of soils/aquifers during wastewater infiltration. However, carbamazepine and N,N-diethyl-meta-toluamide showed higher concentrations in groundwater than those in wastewater, suggesting their accumulation/concentration in soils/pore-waters. Although the contamination of water resources represents one of the most environmental concerns in Mexico, this review brings to light the lack of studies on the occurrence of EOCs in Mexican waters, which is important for public health policies and for developing legislations that incorporates EOCs as priority contaminants in national water quality guidelines. Consequently, the development of legislations will support regulatory compliance for wastewater and drinking water, reducing the human exposure.


Assuntos
Cosméticos , Água Potável , Disruptores Endócrinos , Água Subterrânea , Pentaclorofenol , Praguicidas , Triclosan , Poluentes Químicos da Água , Carbamazepina , Cosméticos/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estradiol , Estrona , Humanos , México , Praguicidas/análise , Preparações Farmacêuticas , Plastificantes , Solo , Edulcorantes , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 827: 154348, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257780

RESUMO

Pharmaceutical and personal care products (PPCPs) are part of the emerging contaminants (ECs) in the environment due to their known or suspected adverse effects in aquatic and terrestrial organisms, as well as in human health. Presence of PPCPs in aquatic and terrestrial ecosystems has been mainly attributed to the effluents of wastewater treatment plants (WWTPs). Although several PPCPs have been detected in wastewater, their removal from wastewater via biological processes is limited. Removal of PPCPs depends on their chemical structure, concentration, solubility, and technology used to treat the wastewater. Electrochemical Advanced Oxidation Processes (EAOPs) are some of the most sought-after methods for dealing with organic pollutants in water including PPCPs, due to generation of strong oxidants such as •OH, H2O2 and O3- by using directly or indirectly electrochemical technology. This review is focused on the removal of main PPCPs via EAOPs such as, anodic oxidation, electro-Fenton, photoelectron-Fenton, solar photoelectron-Fenton, photoelectrocatalysis and sonoelectrochemical processes. Although more than 40 PPCPs have been identified through different analytical approaches, antibiotics, anti-inflammatory and antifungal are the main categories of PPCPs detected in different water matrices. Application of EAOPs has been centered in the removal of antibiotics and analgesics of high consumption by using model media, e.g. Na2SO4. Photoelectrocatalysis and Electro-Fenton processes have been the most versatile EAOPs applied for PPCPs removal under a wide range of operating conditions and a variety of electrodes. Although EAOPs have gained significant scientific interest due to their effectiveness, low environmental impact, and simplicity, further research about the removal of PPCPs and their by-products under realistic concentrations and media is needed. Moreover, mid-, and long-term experiments that evaluate EAOPs performance will provide knowledge about key parameters that allow these technologies to be scaled and reduce the potential risk of PPCPs in aquatic and terrestrial ecosystem.


Assuntos
Cosméticos , Poluentes Químicos da Água , Antibacterianos , Cosméticos/análise , Ecossistema , Humanos , Peróxido de Hidrogênio , Preparações Farmacêuticas , Rios , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
8.
ACS Omega ; 7(4): 3134-3150, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128226

RESUMO

Ferrofluids are colloidal suspensions of iron oxide nanoparticles (IONPs) within aqueous or nonaqueous liquids that exhibit strong magnetic properties. These magnetic properties allow ferrofluids to be manipulated and controlled when exposed to magnetic fields. This review aims to provide the current scope and research opportunities regarding the methods of synthesis of nanoparticles, surfactants, and carrier liquids for ferrofluid production, along with the rheology and applications of ferrofluids within the fields of medicine, water treatment, and mechanical engineering. A ferrofluid is composed of IONPs, a surfactant that coats the magnetic IONPs to prevent agglomeration, and a carrier liquid that suspends the IONPs. Coprecipitation and thermal decomposition are the main methods used for the synthesis of IONPs. Despite the fact that thermal decomposition provides precise control on the nanoparticle size, coprecipitation is the most used method, even when the oxidation of iron can occur. This oxidation alters the ratio of maghemite/magnetite, influencing the magnetic properties of ferrofluids. Strategies to overcome iron oxidation have been proposed, such as the use of an inert atmosphere, adjusting the Fe(II) and Fe(III) ratio to 1:2, and the exploration of other metals with the oxidation state +2. Surfactants and carrier liquids are chosen according to the ferrofluid application to ensure stability. Hence, a compatible carrier liquid (polar or nonpolar) is selected, and then, a surfactant, mainly a polymer, is embedded in the IONPs, providing a steric barrier. Due to the variety of surfactants and carrier liquids, the rheological properties of ferrofluids are an important response variable evaluated when synthesizing ferrofluids. There are many reported applications of ferrofluids, including biosensing, medical imaging, medicinal therapy, magnetic nanoemulsions, and magnetic impedance. Other applications include water treatment, energy harvesting and transfer, and vibration control. To progress from synthesis to applications, research is still ongoing to ensure control of the ferrofluids' properties.

9.
Environ Res ; 210: 112967, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35189100

RESUMO

Wastewater-based epidemiology offers a time- and cost-effective way to monitor SARS-CoV-2 spread in communities and therefore represents a complement to clinical testing. WBE applicability has been demonstrated in a number of cases over short-term periods as a method for tracking the prevalence of SARS-CoV-2 and an early-warning tool for predicting outbreaks in the population. This study reports SARS-CoV-2 viral loads from wastewater treatment plants (WWTPs) and hospitals over a 6-month period (June to December 2020). Results show that the overall range of viral load in positive tested samples was between 1.2 × 103 and 3.5 × 106 gene copies/l, unveiling that secondary-treated wastewaters mirrored the viral load of influents. The interpretation suggests that the viral titers found in three out of four WWTPs were associated to clinical COVID-19 surveillance indicators preceding 2-7 days the rise of reported clinical cases. The median wastewater detection rate of SARS-CoV-2 was one out of 14,300 reported new cases. Preliminary model estimates of prevalence ranged from 0.02 to 4.6% for the studied period. This comprehensive statistical and epidemiological analysis demonstrates that the applied wastewater-based approach to COVID-19 surveillance is in general consistent and feasible, although there is room for improvements.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , México/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Águas Residuárias
11.
Environ Sci Pollut Res Int ; 29(6): 8746-8757, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34490574

RESUMO

The imminent arrival of nanoparticles (NPs) to the wastewater treatment plants (WWTP) brings concern about their effects, which can be related to the wastewater composition. In this work, the effects of titanium dioxide (TiO2) NPs in the removal of carbon, nitrogen, and phosphorus by activated sludge bioreactors during the treatment of synthetic, raw, and filtered wastewaters were evaluated. Floc size, compaction of sludge, and morphological interactions between sludge and NPs were also determined. The main effect of TiO2 NPs was the inhibition of up to 22% in the removal of ammonia nitrogen for all types of wastewaters. This effect is strong dependent on combined factors of TiO2 NPs concentration and content of organic matter and ammonia in wastewater. The removal of dissolved organic carbon was affected by TiO2 NPs in lower level (up to 6%) than nitrogen removal for all types of wastewaters. Conversely to adverse effects, the removals of orthophosphate in the presence of TiO2 NPs were improved by 34%, 16%, and 55% for synthetic, raw, and filtered wastewater, respectively. Compaction of the sludge was also enhanced as the concentrations of NPs increased without alterations in the floc size for all types of wastewaters. Based on TEM and STEM imaging, the main interaction between TiO2 NPs and the activated sludge flocs was the adsorption of NPs on cell membrane. This means that NPs can be attached to cell membrane during aerobic wastewater treatment, and potentially disrupt this membrane. The effects of TiO2 NPs on macronutrient removal clearly depended on wastewater characteristics; hence, the use of realistic media is highly encouraged for ecotoxicological experiments involving NPs.


Assuntos
Nanopartículas , Esgotos , Matéria Orgânica Dissolvida , Nutrientes , Titânio , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
Environ Sci Technol ; 55(20): 13443-13451, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34029070

RESUMO

Knowledge of dissolution, aggregation, and stability of nanoagrochemicals in root exudates (RE) and soil leachate will contribute to improving delivery mechanisms, transport in plants, and bioavailability. We characterized aggregation, stability, and dissolution of four nanoparticles (NPs) in soybean RE and soil leachate: nano-CeO2, nano-Mn3O4, nano-Cu(OH)2, and nano-MoO3. Aggregation differed considerably in different media. In RE, nano-Cu(OH)2, and nano-MoO3 increased their aggregate size for 5 days; their mean sizes increased from 518 ± 43 nm to 938 ± 32 nm, and from 372 ± 14 nm to 690 ± 65 nm, respectively. Conversely, nano-CeO2 and nano-Mn3O4 disaggregated in RE with time, decreasing from 289 ± 5 nm to 129 ± 10 nm, and from 761 ± 58 nm to 143 ± 18 nm, respectively. Organic acids in RE and soil leachate can be adsorbed onto particle surfaces, influencing aggregation. Charge of the four NPs was negative in contact with RE and soil leachate, due to organic matter present in RE and soil leachate. Dissolution in RE after 6 days was 38%, 1.2%, 0.5%, and <0.1% of the elemental content of MoO3, Cu(OH)2, Mn3O4, and CeO2 NPs. Thus, the bioavailability and efficiency of delivery of the NPs or their active ingredients will be substantially modified soon after they are in contact with RE or soil leachate.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Exsudatos e Transudatos , Óxidos , Solo , Solubilidade
13.
Environ Sci Technol ; 55(20): 13452-13464, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34043337

RESUMO

Metabolomics is an emerging tool to understand the potential implications of nanotechnology, particularly for agriculture. Although molybdenum (Mo) is a known plant micronutrient, little is known of its metabolic perturbations. Here, corn and wheat seedlings were exposed to MoO3 nanoparticles (NPs) and the corresponding bioavailable Mo6+ ion at moderate and excessive levels through root exposures. Physiologically, corn was more sensitive to Mo, which accumulated up to 3.63 times more Mo than wheat. In contrast, metabolomics indicated 21 dysregulated metabolites in corn leaves and 53 in wheat leaves. Five more metabolomic pathways were perturbed in wheat leaves compared to corn leaves. In addition to the overall metabolomics analysis, we also analyzed individual metabolite classes (e.g., amino acids, organic acids, etc.), yielding additional dysregulated metabolites in plant tissues: 7 for corn and 7 for wheat. Most of these were amino acids as well as some sugars. Additional significantly dysregulated metabolites (e.g., asparagine, fructose, reduced glutathione, mannose) were identified in both corn and wheat, due to Mo NP exposure, by employing individual metabolite group analysis. Targeted metabolite analysis of individual groups is thus important for finding additional significant metabolites. We demonstrate the value of metabolomics to study early stage plant responses to NP exposure.


Assuntos
Nanopartículas , Triticum , Metabolômica , Molibdênio , Óxidos , Folhas de Planta , Zea mays
14.
Biodegradation ; 32(3): 313-326, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811584

RESUMO

The rapid growth of the use of nanomaterials in different modern industrial branches makes the study of the impact of nanoparticles on the human health and environment an urgent matter. For instance, it has been reported that titanium dioxide nanoparticles (TiO2 NPs) can be found in wastewater treatment plants. Previous studies have found contrasting effects of these nanoparticles over the activated sludge process, including negative effects on the oxygen uptake. The non-utilization of oxygen reflects that aerobic bacteria were inhibited or decayed. The aim of this work was to study how TiO2 NPs affect the bacterial diversity and metabolic processes on an activated sludge. First, respirometry assays of 8 h were carried out at different concentrations of TiO2 NPs (0.5-2.0 mg/mL) to measure the oxygen uptake by the activated sludge. The bacterial diversity of these assays was determined by sequencing the amplified V3-V4 region of the 16S rRNA gene using Illumina MiSeq. According to the respirometry assays, the aerobic processes were inhibited in a range from 18.5 ± 4.8% to 37.5 ± 2.0% for concentrations of 0.5-2.0 mg/mL TiO2 NPs. The oxygen uptake rate was affected mainly after 4.5 h for concentrations higher than 1.0 mg/mL of these nanoparticles. Results indicated that, in the presence of TiO2 NPs, the bacterial community of activated sludge was altered mainly in the genera related to nitrogen removal (nitrogen assimilation, nitrification and denitrification). The metabolic pathways prediction suggested that genes related to biofilm formation were more sensitive than genes directly related to nitrification-denitrification and N-assimilation processes. These results indicated that TiO2 NPs might modify the bacteria diversity in the activated sludge according to their concentration and time of exposition, which in turn impact in the performance of the wastewater treatment processes.


Assuntos
Nanopartículas , Esgotos , Bactérias/genética , Biodegradação Ambiental , Humanos , RNA Ribossômico 16S/genética , Titânio
15.
Sci Total Environ ; 782: 146788, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839675

RESUMO

For more than 4 decades, the Atoyac River in central Mexico has been subjected to anthropogenic stresses driven by the urban and industrial wastewater discharges, as well as leachates coming from intensive peri-urban agricultural practices. This review provides an overview of the levels of organic, inorganic and microbiological contaminants found during the past 10 years in waters and bed sediments of the Atoyac system, and the implication of this pollution over the human health. Overall, the Atoyac waters present high loads of nutrients, BOD5, COD, TDS and trace elements (Al, Fe, Zn, Pb, Cr, Cu). The bacteriological pollution is extremely high; with total coliform values of up to 1012 MPN/100 mL. Anthropogenic organics such as PAHs, PCBs and organophosphate and organochlorine pesticides have been also found in river waters. Although pharmaceuticals have not been surveyed in a broad range, considerable concentrations of Triclosan, Naproxen and Diclofenac have been detected in river waters. Regarding sediments, anoxic conditions promote the precipitation/enrichment of sulfides and associated trace elements (As, Fe, Mo, Pb, Zn, Cu, Cr). Microplastics in sediments included films (25.9%), fragments (22.2%), fibers (14.8%) and pellets (11.1%). Fibers from the textile industry were found to accumulate in the aquatic biota of the Valsequillo reservoir. Quality indexes demonstrated that waters and sediments in the Puebla City are the most contaminated. The water of this zone reached the classification of strongly contaminated, whereas the sediments showed the most accumulation/enrichment of major and trace elements of the riverine zones. The main pathologies found in humans were gastrointestinal diseases, whereas children living in vulnerable zones showed elevated levels of cancer biomarkers. Studies have indicated a high risk of suffering cancerous diseases in children that consume contaminated groundwater and high risks for developing non-cancerous diseases in adults working with river-irrigated soils and children consuming milk with high content of river-derived Arsenic.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Criança , Cidades , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , México , Plásticos , Rios , Poluentes Químicos da Água/análise
16.
J Water Process Eng ; 40: 101947, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592728

RESUMO

Currently, SARS-CoV-2 has been detected in the influent of wastewater treatment plants (WWTP), pumping stations, manholes, sewer networks and sludge of WWTP and facilities of countries as France, Spain, Italy, Netherlands, United States, Australia, Ecuador, Brazil and Japan. Although this virus has been detected in the wastewater streams, there is no robust method for its detection and quantification in wastewater. This review compiled and analyzed the virus concentration approaches applied to detect the SARS-CoV-2, besides to provide insights about the methodology for viral concentration, limit of detection, occurrence, persistence, and perspectives post-COVID-19 related with the implications of the virus presence in wastewater. The SARS-COV-2 detection in wastewater has been related to virus concentration methods, which present different recovery rates of the virus. The most used viral concentration methods have been the polyethylene glycol (PEG) for precipitation of viral material and the ultrafiltration at molecular weight level. After viral concentration, the detection and quantification of SARS-COV-2 in wastewater are mainly via quantitative reverse transcription polymerase chain reaction (RT-qPCR), which is the clinical assay adapted for environmental purposes. Although in some experiments the positive control during RT-qPCR is running a surrogated virus (e.g., Mengovirus or Dengue virus), RT-qPCR or reverse transcription droplet digital PCR (RT-ddPCR) targeting the gene encoding nucleocapsid (N1, N2 and N3) of SARS-COV-2 are highly recommended to calculate the limit of detection in wastewater samples. Current results suggest that a rigorous methodology to elucidate the positive cases in a region from genomic copies in wastewater is needed.

17.
J Environ Manage ; 277: 111428, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035936

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products and one of their major fate is the wastewater treatment plants. However, NPs eventually arrive to aquatic and terrestrial ecosystems via treated water and biosolids, respectively. Since low concentration of NPs is accumulating in the upflow anaerobic sludge blanket (UASB) reactors that treat wastewater and reclaim water quality, the accumulation of TiO2 NPs in these reactors may impact in their performance. In this work, the long-term effects of TiO2 NPs on the main benefits of treating wastewater by UASB reactors such as, biogas production, methane fraction in biogas and organic matter removal were evaluated. Evaluation consisted of monitoring such parameters in two identical UASB reactors, one UASB-Control (without NPs) and the experimental one (UASB-TiO2 NPs) that received wastewater with TiO2 NPs. The fate of NPs in the UASB reactor was also determined. Results indicated that biogas production increased by 8.8% due to the chronic exposure of UASB reactor to TiO2 NPs during the first 44 days of experiment. However, the methane content in the biogas had no significant differences between both UASB, ranging between 78% and 90% of methane during the experiment. The removal of organic matter in both UASB was similar and ranged 92-98% along the experimental time. This means that accumulation of TiO2 NPs did not altered the biogas production and organic matter removal. However, the content of total volatile solids (TVS) in UASB-TiO2 NPs dropped off from 137.8 g to 64.2 g in 84 days, while for control reactor that decreased from 141.6 g to 92.4 g in the same period. Hence, the increased biogas production in the UASB exposed to TiO2 was attributed to hydrolysis of the TVS in this reactor. The main fate of TiO2 NPs was the granular sludge, which accumulated up to 8.56 mg Ti/g, which represent around 99% of the Ti spiked to the reactor and the possible cause of the biomass hydrolyzation in the UASB. Disposal of UASB sludge containing NPs from may raise ecotoxicological concerns due to the use of biosolids in agricultural activities.


Assuntos
Nanopartículas , Águas Residuárias , Anaerobiose , Reatores Biológicos , Ecossistema , Metano , Esgotos , Titânio , Eliminação de Resíduos Líquidos
18.
Environ Pollut ; 269: 115445, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33277063

RESUMO

The identification of nitrate (NO3-) sources and biogeochemical transformations is critical for understanding the different nitrogen (N) pathways, and thus, for controlling diffuse pollution in groundwater affected by livestock and agricultural activities. This study combines chemical data, including environmental isotopes (δ2HH2O, δ18OH2O, δ15NNO3, and δ18ONO3), with land use/land cover data and a Bayesian isotope mixing model, with the aim of reducing the uncertainty when estimating the contributions of different pollution sources. Sampling was taken from 53 groundwater sites in Comarca Lagunera, northern Mexico, during 2018. The results revealed that the NO3- (as N) concentration ranged from 0.01 to 109 mg/L, with more than 32% of the sites exceeding the safe limit for drinking water quality established by the World Health Organization (10 mg/L). Moreover, according to the groundwater flow path, different biogeochemical transformations were observed throughout the study area: microbial nitrification was dominant in the groundwater recharge areas with elevated NO3- concentrations; in the transition zones a mixing of different transformations, such as nitrification, denitrification, and/or volatilization, were identified, associated to moderate NO3- concentrations; whereas in the discharge area the main process affecting NO3- concentrations was denitrification, resulting in low NO3- concentrations. The results of the MixSIAR isotope mixing model revealed that the application of manure from concentrated animal-feeding operations (∼48%) and urban sewage (∼43%) were the primary contributors of NO3- pollution, whereas synthetic fertilizers (∼5%), soil organic nitrogen (∼4%), and atmospheric deposition played a less important role. Finally, an estimation of an uncertainty index (UI90) of the isotope mixing results indicated that the uncertainties associated with atmospheric deposition and NO3--fertilizers were the lowest (0.05 and 0.07, respectively), while those associated with manure and sewage were the highest (0.24 and 0.20, respectively).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Teorema de Bayes , China , Monitoramento Ambiental , Gado , México , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
19.
Water Res ; 189: 116603, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189972

RESUMO

Metal-based nanoparticles (NPs) can be found in wastewater streams, which are significant pathways for the release of NPs to the environment. Determination of the NPs concentration in wastewater streams is important for performing appropriate ecotoxicological evaluations. The aim of this work was to determine the incidence of NPs from 13 different elements throughout the wastewater treatment process by using single particle inductively coupled plasma mass spectrometry (spICP-MS). The incidence was determined in samples of the influent, post-primary treatment and effluent of the activated sludge process, as well as in the reclaimed water of a full-scale wastewater treatment plant (WWTP). In addition, concentration of NPs was determined in the waste activated sludge and in the anaerobic digester. The concentration of metal-based NPs in the influent wastewater were between 1,600 and 10,700 ng/L for elements such as Ti, Fe, Ce, Mg, Zn and Cu, while that for Ni, Al, Ag, Au, Co and Cd was below 100 ng/L. Concentrations in reclaimed water ranged between 0.6 and 721 ng/L, ranked as Mg > Ti > Fe > Cu > Ni > Ce > Zn > Mn > Al  > Co > Ag > Cd  > Au. Results indicated that the activated sludge process and reclaimed water system removed 84-99% of natural and engineered metal-based NPs from influent to reclaimed water, except for Mg, Ni and Cd where the removal ranged from 70 to 78%. The highest concentrations of NPs were found in the waste activated sludge and anaerobic sludge, ranging from 0.5 to 39,900 ng/L. The size distribution of NPs differed in different wastewater streams within the WWTP, resulting in smaller particles in the effluent (20-180 nm) than in the influent (23-233 nm) for most elements. Conversely, NPs were notably larger in the waste activated sludge samples than in the anaerobic sludge or wastewater, since conditions in the secondary treatment lead to precipitation of several metal-based NPs. The incidence of metal-based NPs from 13 elements in wastewater decreased significatively after the conventional wastewater treatment train. However, anaerobic digesters store high NPs concentrations. Hence, the disposal of sludge needs to take this into account to evaluate the risk of the release of NPs to the environment.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Incidência , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 265(Pt B): 114960, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32593902

RESUMO

In this study, the distribution profiles, emission characteristics, and health risks associated with 43 volatile and semi-volatile organic compounds, including 15 phenols, 18 polycyclic aromatic hydrocarbons (PAHs), 6 BTEX, and 4 other compounds, were determined in the wastewater treatment plant (WWTP) of a coking factory (plant C) and the succeeding final WWTP (central WWTP). Total phenols with a concentration of 361,000 µg L-1 were the predominant compounds in the influent wastewater of plant C, whereas PAHs were the major compounds in the final effluents of both coking WWTPs (84.4 µg L-1 and 30.7 µg L-1, respectively). The biological treatment process in plant C removed the majority of volatile organic pollutants (94.1%-99.9%). A mass balance analysis for plant C showed that biodegradation was the main removal pathway for all the target compounds (56.6%-99.9%) except BTEX, chlorinated phenols, and high molecular weight (MW) PAHs. Chlorinated phenols and high MW PAHs were mainly removed via sorption to activated sludge (51.8%-73.2% and 60.2%-75.9%, respectively). Air stripping and volatilization were the dominant mechanisms for removing the BTEX compounds (59.8%-73.8%). The total emission rates of the detected volatile pollutants from plant C and the central WWTP were 1,640 g d-1 and 784 g d-1, respectively. Benzene from the equalization basins of plant C and the central WWTP corresponded to the highest inhalation carcinogenic risks (1.4 × 10-3 and 3.2 × 10-4, respectively), which exceeded the acceptable level for human health (1 × 10-6) recommended by the United States Environmental Protection Agency. The results showed that BaP exhibited the highest inhalation non-cancer risk, with a hazard index ratio of 70 and 30 for plant C and the central WWTP, respectively. Moreover, the excess sludge generated during wastewater treatment should also be carefully handled because it adsorbed abundant PAHs and chlorinated phenols at coking plant C (58,000 µg g-1 and 3,500 µg g-1) and the central WWTP (622 µg g-1 and 54 µg g-1).


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Humanos , Medição de Risco , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...